Numerical convergence of the random vortex method for complex flows
نویسندگان
چکیده
منابع مشابه
Numerical Convergence of the Random Vortex Method for Complex Flows
Vortex methods rely principally on a discretization of the continuous two-dimensional time dependent vorticity eld into a large number of vortex \blobs", whose position and strength determine the underlying velocity eld. In this paper, the convergence of the random vortex method (RVM) for a complex ow is studied in function of three discretization parameters. Two of these parameters are related...
متن کاملNumerical Simulation of the Wake Flow Behind an Ellipse using Random Vortex Method (RESEARCH NOTE)
Direct numerical simulation of the wake flow around and behind a planar ellipse using a random vortex method is presented. Fluid is considered incompressible and the aspect ratios of ellipse and the angles of attacks are varied. This geometry can be a logical prelude to the more complex geometries, but less time dependent experimental measurements are available to validate the numerical results...
متن کاملAlmost optimal convergence of the point vortex method for vortex sheets using numerical filtering
Standard numerical methods for the Birkhoff-Rott equation for a vortex sheet are unstable due to the amplification of roundoff error by the Kelvin-Helmholtz instability. A nonlinear filtering method was used by Krasny to eliminate this spurious growth of round-off error and accurately compute the Birkhoff-Rott solution essentially up to the time it becomes singular. In this paper convergence is...
متن کاملRandom Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Proceedings
سال: 1996
ISSN: 1270-900X
DOI: 10.1051/proc:1996021